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Genetic Similarity

• Pre-genomic
• Genotypes for quantitative traits could not be observed

• Expected genetic similarity between relatives played a key role in modeling

covariances

• Methods for prediction of breeding values and estimation of variance components

relied on models for the covariance between relatives conditional on pedigrees

• Genomic:
• Genotypes can be observed

• Genetic covariance models are not necessary

• Can estimate effects of genotypes directly

• Inferences are based on estimated effects

• Observed genetic similarity matrix is not proportional to a genetic covariance matrix

(J Anim Breed Genet. 2017, 134:213 223)

• Should not blindly substitute G for A in genomic analyses.
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Use of Observed Similarity

• Convenient

• Computational efficiency

• Control genomic inbreeding

2



Alterative Measures of Genomic Similarity

Let X denote the matrix of centered genotype covariates:

• VanRaden (2008):

G ∝ XX′

All loci contribute equally.

• Zhang et al. (2010):

G ∝ XDX′

D is diagonal matrix, where dii is an estimate of the genetic variance for

locus i

• Wang et al. (2012) Iterative version of Zhang et al. (2010)
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Bayesian Inference of Genomic Similarity

Consider genomic model:

a = Xα,

where

α|D ∼ N(0,D)

and

Var(a|X,D) = XDX′ (1)

= Gσ2a ,

where D may not be observable, G = 1
σ2
a
XDX′, and σ2a is the genetic variance.
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Bayesian Alphabet Models

• In RRBLUP (BayesC0), D is observable: D = Iσ2α, and σ2α = σ2
a∑

i 2pi (1−pi )

• In BayesA, the diagonals of D are unobserved, and independent

χ−2(S2
A, νA) priors are used for inference.

• In BayesC, a priori a diagonal is zero with probability π, and all non-null

values are assigned a χ−2(S2
C , νC ).

• In BayesB, a priori a diagonal is zero with probability π, and non-null

values are assigned independent χ−2(S2
B , νB) priors.
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Inference on G from MCMC samples

Let Di denote sample i (normalized) from the MCMC procedure.

Then,

Gi = XDiX
′

are MCMC samples of G that can be used for inference of genomic similarities

that are specific to the trait being analyzed.

For example, the posterior mean of G could be estimated as:

Ĝ = XD̂X′,

where D̂ is the posterior mean of D estimated from the MCMC samples.
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Simulation

• 10 chromosomes of length 1 Morgan and 2,000 SNPs

• Random mating in a population of size 100 for 100 generations

• Population expanded to 500, 2,000 or 4,000 for training

• 100 loci randomly chosen to be QTL

• QTL effects were sampled from a standard Normal distribution

• Residual variance was chosen to get a heritability of 0.5
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Frobenius Distance to True Genomic Similarity

The ”true” genomic similarity matrix was defined as

GQ =
QcQ′c

100
,

Samples of G were obtained as:

Gi = XDiX
′,

where Di was drawn from its prior or posterior.

The Frobenius distance between GQ and Gi was computed as

D =
√
tr(GQ − Gi)2,
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Distributions of Frobenius Distance

Results are presented for:

• BayesCπ, where π is treated as unknown with a Uniform prior

• BayesA
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BayesCπ with n = 500

Figure 1: Distributions of the Frobenius distance to GQ from GDi (posterior)

and GD∗
i
(prior) when training data size is 500. The mean and variance are:

5.3 and 0.42 for the posterior, and 5.7 and 0.02 for the prior.
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BayesCπ with n = 2000

Figure 2: Distributions of the Frobenius distance to GQ from GDi (posterior)

and GD∗
i
(prior) when training data size is 2000. The mean and variance are:

4.6 and 0.05 for the posterior, and 5.5 and 0.02 for the prior.
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BayesCπ with n = 4000

Figure 3: Distributions of the Frobenius distance to GQ from GDi (posterior)

and GD∗
i
(prior) when training data size is 4000. The mean and variance are:

3.9 and 0.01 for the posterior, and 5.7 and 0.02 for the prior.
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BayesA with n = 4000

Figure 4: Distributions of the Frobenius distance to GQ from GDi (posterior)

and GD∗
i
(prior) when training data size is 4000. The mean and variance are:

4.0 and 0.37 for the posterior, and 4.0 and 0.01 for the prior.
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Distance from Prior and Posterior Means of GDi to GQ

Mean Frobenius Distance to GQ

BayesC0: Prior/Posterior (D = Iσ2α ) 3.96

BayesA: Prior 3.96

BayesCπ: Prior 3.96

BayesA: Posterior 3.70

BayesCπ: Posterior 2.98

Table 1: Posterior means were estimated from 3000 (thinning:20) MCMC samples with

n = 4000
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