Bayesian inference of genetic similarity among individuals from markers and phenotypes

Rohan Fernando and Daniel Gianola

February 13, 2018

Iowa State University and University of Wisconsin

• Pre-genomic

• Genotypes for quantitative traits could not be observed

• Pre-genomic

- Genotypes for quantitative traits could not be observed
- Expected genetic similarity between relatives played a key role in modeling covariances

1

- Pre-genomic
 - Genotypes for quantitative traits could not be observed
 - Expected genetic similarity between relatives played a key role in modeling covariances
 - Methods for prediction of breeding values and estimation of variance components relied on models for the covariance between relatives conditional on pedigrees

- Pre-genomic
 - Genotypes for quantitative traits could not be observed
 - Expected genetic similarity between relatives played a key role in modeling covariances
 - Methods for prediction of breeding values and estimation of variance components relied on models for the covariance between relatives conditional on pedigrees
- Genomic:
 - Genotypes can be observed
 - Genetic covariance models are not necessary
 - Can estimate effects of genotypes directly
 - Inferences are based on estimated effects

- Pre-genomic
 - Genotypes for quantitative traits could not be observed
 - Expected genetic similarity between relatives played a key role in modeling covariances
 - Methods for prediction of breeding values and estimation of variance components relied on models for the covariance between relatives conditional on pedigrees
- Genomic:
 - Genotypes can be observed
 - Genetic covariance models are not necessary
 - Can estimate effects of genotypes directly
 - Inferences are based on estimated effects
 - Observed genetic similarity matrix is **not** proportional to a genetic covariance matrix (J Anim Breed Genet. 2017, 134:213 223)
 - $\bullet\,$ Should not blindly substitute G for A in genomic analyses.

- Convenient
- Computational efficiency
- Control genomic inbreeding

Alterative Measures of Genomic Similarity

Let $\boldsymbol{\mathsf{X}}$ denote the matrix of centered genotype covariates:

• VanRaden (2008):

$\mathbf{G} \propto \mathbf{X}\mathbf{X}'$

All loci contribute equally.

• Zhang et al. (2010):

$\textbf{G} \propto \textbf{X}\textbf{D}\textbf{X}'$

D is diagonal matrix, where d_{ii} is an estimate of the genetic variance for locus *i*

• Wang et al. (2012) Iterative version of Zhang et al. (2010)

Consider genomic model:

$$\mathbf{a} = \mathbf{X} \boldsymbol{\alpha},$$

where

 $lpha | {f D} \sim {\sf N}({f 0},{f D})$

and

$$egin{array}{lll} \mbox{Var}(\mathbf{a}|\mathbf{X},\mathbf{D}) &= \mathbf{X}\mathbf{D}\mathbf{X}' \ &= \mathbf{G}\sigma_a^2, \end{array}$$

where **D** may not be observable, $\mathbf{G} = \frac{1}{\sigma_a^2} \mathbf{X} \mathbf{D} \mathbf{X}'$, and σ_a^2 is the genetic variance.

• In RRBLUP (BayesC0), **D** is observable: $\mathbf{D} = \mathbf{I}\sigma_{\alpha}^2$, and $\sigma_{\alpha}^2 = \frac{\sigma_a^2}{\sum_i 2p_i(1-p_i)}$

- In RRBLUP (BayesC0), **D** is observable: $\mathbf{D} = \mathbf{I}\sigma_{\alpha}^2$, and $\sigma_{\alpha}^2 = \frac{\sigma_a^2}{\sum_i 2p_i(1-p_i)}$
- In BayesA, the diagonals of **D** are unobserved, and independent $\chi^{-2}(S_A^2, \nu_A)$ priors are used for inference.

- In RRBLUP (BayesC0), **D** is observable: $\mathbf{D} = \mathbf{I}\sigma_{\alpha}^2$, and $\sigma_{\alpha}^2 = \frac{\sigma_a^2}{\sum_i 2p_i(1-p_i)}$
- In BayesA, the diagonals of **D** are unobserved, and independent $\chi^{-2}(S_A^2, \nu_A)$ priors are used for inference.
- In BayesC, a priori a diagonal is zero with probability π , and all non-null values are assigned a $\chi^{-2}(S_C^2, \nu_C)$.

- In RRBLUP (BayesC0), **D** is observable: $\mathbf{D} = \mathbf{I}\sigma_{\alpha}^2$, and $\sigma_{\alpha}^2 = \frac{\sigma_a^2}{\sum_i 2p_i(1-p_i)}$
- In BayesA, the diagonals of **D** are unobserved, and independent $\chi^{-2}(S_A^2, \nu_A)$ priors are used for inference.
- In BayesC, a priori a diagonal is zero with probability π , and all non-null values are assigned a $\chi^{-2}(S_C^2, \nu_C)$.
- In BayesB, a priori a diagonal is zero with probability π , and non-null values are assigned independent $\chi^{-2}(S_B^2, \nu_B)$ priors.

Let D_i denote sample *i* (normalized) from the MCMC procedure.

Let \mathbf{D}_i denote sample *i* (normalized) from the MCMC procedure. Then,

$$\mathbf{G}_i = \mathbf{X} \mathbf{D}_i \mathbf{X}'$$

are MCMC samples of **G** that can be used for inference of genomic similarities that are specific to the trait being analyzed.

Let \mathbf{D}_i denote sample *i* (normalized) from the MCMC procedure. Then,

$$\mathbf{G}_i = \mathbf{X} \mathbf{D}_i \mathbf{X}'$$

are MCMC samples of **G** that can be used for inference of genomic similarities that are specific to the trait being analyzed.

For example, the posterior mean of **G** could be estimated as:

$$\hat{\mathbf{G}} = \mathbf{X}\hat{\mathbf{D}}\mathbf{X}',$$

where \hat{D} is the posterior mean of D estimated from the MCMC samples.

- 10 chromosomes of length 1 Morgan and 2,000 SNPs
- Random mating in a population of size 100 for 100 generations
- Population expanded to 500, 2,000 or 4,000 for training
- 100 loci randomly chosen to be QTL
- QTL effects were sampled from a standard Normal distribution
- Residual variance was chosen to get a heritability of 0.5

Frobenius Distance to True Genomic Similarity

The "true" genomic similarity matrix was defined as

$$\mathbf{G}_Q = \frac{\mathbf{Q}_c \mathbf{Q}'_c}{100},$$

Frobenius Distance to True Genomic Similarity

The "true" genomic similarity matrix was defined as

$$\mathbf{G}_Q = \frac{\mathbf{Q}_c \mathbf{Q}'_c}{100},$$

Samples of \mathbf{G} were obtained as:

 $\mathbf{G}_i = \mathbf{X} \mathbf{D}_i \mathbf{X}',$

where \mathbf{D}_i was drawn from its prior or posterior.

Frobenius Distance to True Genomic Similarity

The "true" genomic similarity matrix was defined as

$$\mathbf{G}_Q = \frac{\mathbf{Q}_c \mathbf{Q}'_c}{100},$$

Samples of \mathbf{G} were obtained as:

$$\mathbf{G}_i = \mathbf{X} \mathbf{D}_i \mathbf{X}',$$

where D_i was drawn from its prior or posterior.

The Frobenius distance between \mathbf{G}_Q and \mathbf{G}_i was computed as

$$\mathrm{D} = \sqrt{\mathrm{tr}(\mathbf{G}_Q - \mathbf{G}_i)^2}$$

Results are presented for:

- BayesC π , where π is treated as unknown with a Uniform prior
- BayesA

Figure 1: Distributions of the Frobenius distance to \mathbf{G}_Q from \mathbf{G}_{D_i} (posterior) and $\mathbf{G}_{D_i^*}$ (prior) when training data size is 500. The mean and variance are: 5.3 and 0.42 for the posterior, and 5.7 and 0.02 for the prior.

Bayes $\mathbf{C}\pi$ with n = 2000

Figure 2: Distributions of the Frobenius distance to \mathbf{G}_Q from \mathbf{G}_{D_i} (posterior) and $\mathbf{G}_{D_i^*}$ (prior) when training data size is 2000. The mean and variance are: 4.6 and 0.05 for the posterior, and 5.5 and 0.02 for the prior.

BayesC π with n = 4000

Figure 3: Distributions of the Frobenius distance to \mathbf{G}_Q from \mathbf{G}_{D_i} (posterior) and $\mathbf{G}_{D_i^*}$ (prior) when training data size is 4000. The mean and variance are: 3.9 and 0.01 for the posterior, and 5.7 and 0.02 for the prior.

Figure 4: Distributions of the Frobenius distance to \mathbf{G}_Q from \mathbf{G}_{D_i} (posterior) and $\mathbf{G}_{D_i^*}$ (prior) when training data size is 4000. The mean and variance are: 4.0 and 0.37 for the posterior, and 4.0 and 0.01 for the prior.

Mean	Frobenius Distance to ${\boldsymbol{G}}_{{\boldsymbol{Q}}}$
BayesC0: Prior/Posterior ($\mathbf{D} = \mathbf{I}\sigma_{\alpha}^2$)	3.96
BayesA: Prior	3.96
BayesC π : Prior	3.96
BayesA: Posterior	3.70
BayesC π : Posterior	2.98

Table 1: Posterior means were estimated from 3000 (thinning:20) MCMC samples with n = 4000

RLF is grateful for useful discussions with:

Hao Cheng

Jack Dekkers